Journal of Organometallic Chemistry, 304 (1986) 127–135 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

NEW OBSERVATIONS ON DICYCLOPENTADIENYLMOLYBDENUM COMPLEXES DERIVED FROM DIMETHYL ACETYLENEDICARBOXYLATE. CRYSTAL STRUCTURE OF $[(\eta^5-C_5H_5), MoOC(0)CH=CCO_2CH_3]$

M. CARIOU, M.M. KUBICKI, R. KERGOAT, J.E. GUERCHAIS,

Unité Associée au CNRS No. 322, Chimie, Electrochimie et Photochimie Moléculaires, Equipe de Chimie Inorganique Moléculaire, Université de Bretagne Occidentale, 29287 Brest-Cedex (France)

and P. L'HARIDON

Laboratoire de Chimie Minérale C, Unité Associée au CNRS No. 254, Université de Rennes-Beaulieu, 35042 Rennes-Cedex (France)

(Received October 17th, 1985)

Summary

Addition of chloroform to a solution of $(\eta^5 \cdot C_5 H_5)_2 MoH_2$ and dimethylacetylenedicarboxylate $(CH_3CO_2C\equiv CCO_2CH_3)$ in THF at 0°C gives two new complexes: (i) chloro- σ -alkenyl $(\eta^5 \cdot C_5 H_5)_2 MoCl[Z \cdot C(CO_2CH_3) = CH(CO_2CH_3)]$ and (ii) metallacyclic $[(\eta^5 \cdot C_5 H_5)_2 MoOC(O)CH = CCO_2CH_3]$. An X-ray diffraction study of the latter product revealed the presence of one water molecule per one organometallic molecule in the unit cell: space group $P2_1$, a 12.111(9), b 7.374(2), c 7.830(5) Å, β 93.43(4)°, Z = 2. The Mo-C bond length is 2.180(6) Å. A mechanism involving an intramolecular elimination of CH_4 from the initially formed insertion product $(\eta^5 \cdot C_5 H_5)_2 MoH[Z \cdot C(CO_2CH_3) = CH(CO_2CH_3)]$ is proposed for its formation.

Introduction

Dimethyl acetylenedicarboxylate (abbreviated as dmad) was shown by Nakamura and Otsuka to undergo insertion into one of the two Mo-H bonds in the dicyclopentadienyldihydridomolybdenum complex $(\eta^5-C_5H_5)_2MoH_2$ [1]. A recent X-ray structure analysis showed that the insertion hydrido- σ -alkenyl complex $(\eta^5-C_5H_5)_2MoH[Z-C(CO_2CH_3)=CH(CO_2CH_3)]$ (I) is the Z-isomer resulting from *trans*-insertion of the alkyne [2]. Earlier observations suggested that I undergoes a thermal (110°C) rearrangement to a stable dimethyl fumarate complex $(\eta^5-C_5H_5)_2Mo[trans-CH(CO_2CH_3)=CH(CO_2CH_3)]$ (II). σ -Alkenyl complex I reacts with dry HCl to give a chloro- σ -alkyl product $(\eta^5-C_5H_5)_2MoCl[\sigma-CH(CO_2CH_3)-CH_2(CO_2CH_3)]$ (III) [1]. For some related dicyclopentadienylmolybdenum complexes Petersen showed that when the molybdenocene derived from $(\eta^5 - C_5H_4CH_3)_2MoCl_2$ and Na/Hg amalgam is treated with dmad a 16 electron oxomolybdenum(IV) complex $(\eta^5 - C_5H_4CH_3)Mo(=O)[(CH_3O_2C)C=C(CO_2CH_3)C_5H_4-CH_3)]$ is formed rather than the expected metallacyclopropene $(\eta^5 - C_5H_4CH_3)_2-Mo[C_2(CO_2CH_3)_2]$, suggesting that the acetylene chemistry of molybdenocene is more complex than originally thought [3].

During our recent studies on the electronic properties and reactivity of σ -alkenyl complexes we used an established method for replacement of a hydride by a halide ligand in the hydrido- σ -alkenyl complexes (η^5 -C₅H₅)₂MoH(σ -CR=CHR') (R = CF₃, CN, R' = H; R = R' = CF₃, CN) involving dissolution of these complexes in halogenated solvents [4]. The same method applied to the complex I (η^5 -C₅H₅)₂MoH[Z-C(CO₂CH₃)=CH(CO₂CH₃)] and CHCl₃ gave an unexpected metal-lacyclic complex [(η^5 -C₅H₅)₂MoOC(O)CH=CCO₂CH₃] (IV). We report here the structure of IV, together with some other observations on the chemistry of the (η^5 -C₅H₅)₂MoH₂-dmad system.

Results and discussion

When an equal volume of CHCl₃ was added to a solution of $(\eta^5-C_5H_5)_2$ MoH[Z-C(CO₂CH₃)=CH(CO₂CH₃)] (I) prepared from $(\eta^5-C_5H_5)_2$ MoH₂ and dmad in THF at 0°C [1], the colour changed from red to brown-red. Chromatography of the resulting solution gave three products: the expected chloro- σ -alkenyl complex $(\eta^5-C_5H_5)_2$ MoCl[Z-C(CO₂CH₃)=CH(CO₂CH₃)] (V), the known dimethylfumarate complex $(\eta^5-C_5H_5)_2$ Mo[*trans*-CH(CO₂CH₃)] (II) [1] and the unexpected metallacyclic complex $[(\eta^5-C_5H_5)_2$ MoOC(O)CH=CCO₂CH₃] (IV) (Scheme 1).

Complexes II and V were identified by their ¹H NMR spectra (Table 1). The ¹H NMR spectrum of IV exhibited four resonances 6.46 (=CH), 5.30 (C_5H_5), 3.80

SCHEME 1

TABLE 1 ¹H NMR DATA FOR ALL COMPLEXES STUDIED (IN CDCl₁)

^a In toluene at 25°C.

(CH₃) and 1.93 ppm (?), integrating in the ratio 1/10/3/2, respectively. Six resonances were present in the ¹³C NMR spectrum of IV, at 186.0, 178.2, 168.7, 137.3, 93.8 and 51.7 ppm; of these only the two last resonances could be assigned unambiguously, to C₅H₅ and CH₃ carbons. X-ray structure analysis of IV revealed a metallacyclic structure with one molecule of water of crystallization per organometallic molecule. This structure will be discussed below, but its availability permitted clear assignment of the fourth ¹H resonance (1.93 ppm, H₂O) and of the remaining four ¹³C resonances (Fig. 1).

A question arises as to which complex is the precursor for the formation of IV: is it the fumarate complex II or the insertion complex I. In order to answer this

Fig. 1. Structure of complex IV showing the assignments for ¹³C resonances in its ¹³C NMR spectrum.

Fig. 2. Conformational orientation of the σ -alkenyl ligand in I.

question a solution of II in CHCl₃ was stirred for 3 days at room temperature. The green precipitate formed was identified to be $(\eta^5-C_5H_5)_2MoCl_2$. Three other products were present in solution: methyl fumarate CH₃O₂CCH=CHCO₂CH₃, chloro- σ -alkenyl complex V and chloro- σ -alkyl complex $(\eta^5-C_5H_5)_2MoCl[\sigma-CH(CO_2CH_3)CH_2(CO_2CH_3)]$ (III). Complex III was prepared earlier by Nakamura and Otsuka by the action of HCl on I [1]. Complex III can also be obtained by chlorination with CHCl₃ of the hydrido- σ -alkyl complex $(\eta^5-C_5H_5)_2MoH[\sigma-CH(CO_2CH_3)CH_2(CO_2CH_3)]$ resulting from the insertion of methylfumarate into one of the two Mo-H bonds in $(\eta^5-C_5H_5)_2MoH_2$. The presence of metallacyclic complex IV was not detected in the products of the reaction of II with CHCl₃.

If IV is formed from I the simplest reaction path would involve elimination of methane and its presence was detected by gas chromatography in a sample of the gases above the reaction mixture. Assuming that there is CH_4 elimination, it is necessary to consider the conformational orientation of the σ -alkenyl ligand in I (Fig. 2) with respect to the line bisecting the $(\eta^5-C_5H_5)Mo(\eta^5-C_5H_5)$ and CMoH angles. Such different conformational orientations of σ -alkenyl ligands have been observed in the case of ligands activated by CF₃ groups [4,5].

We deduced from an X-ray structure analysis of I carried out by Herberich, Hesner and Okuda [2] that in the solid state I has a "perpendicular" conformation. If the elimination of CH_4 is an intramolecular process, a four-membered ring should be formed; a five-membered one could arise from an intermolecular elimination (Scheme 2). On the other hand, a "parallel" conformation of σ -alkenyl ligand could lead to the formation of a five-membered ring by an intramolecular elimination.

In order to check the existence of both "perpendicular" and "parallel" conformations of I in solution, a variable temperature study in deuterated toluene was carried out in the temperature range -60 to +58°C. This revealed the presence of two sets of ¹H resonances attributed to the presence of both conformers (Fig. 2) at temperatures below 12°C. The isomer ratio was 2/1, and did not vary between -60°C and +12°C. ¹H NMR data given as example at 0°C are: predominant conformer 6.89 (=CH), 4.79 (C₅H₅), 3.70 and 3.62 (OCH₃), -8.87 (MoH); minor conformer 6.99, 4.69, 3.70 and 3.62, and -7.30, respectively. Thus, it is reasonable to suppose that IV is formed in the presence of CHCl₃ from a "parallel" conformer of I via an intramolecular elimination of methane (Scheme 2). Intermolecular interactions depicted in this Scheme could lead to the polynuclear species.

However, the role of $CHCl_3$ in this reaction is not understood. When either H_2O or CH_3OH are added (in place of $CHCl_3$) to the solution of I in THF at 0°C, only the fumarate complex II is formed, but addition of H_2O to the solution of I in 1/1 THF/CHCl₃ increases the yield of IV up to about 80%. This seems to be a logical consequence of the presence of water molecules in the crystals of I.

The dealkylation reactions of $CO_2 R$ esters have been previously observed, e.g. by Shaw et al. [6] in the presence of NaI in ethanol and by Braunstein et al. [7] in the presence of BuLi or C_3H_5I .

Structure of $[(\eta^5 - C_5 H_5)_2 MoOC(O)CH = CCO_2 CH_3] \cdot H_2 O(IV)$

The structure of IV consists of metallacyclic organometallic molecules (Fig. 3) linked via their O(2) atoms to the water molecules (O(5)) by the hydrogen bonds (O(2)-O(5) 2.879(8) Å). Relevant interatomic distances and angles are given in Table 2. The geometry around the molybdenum atom is typical of bent dicyclopentadienyl complexes [8]. The five-membered ring MoO(1)C(1)C(2)C(3) is almost planar, the largest deviation from the best plane being 0.01 Å (O(1) for C(1) atoms). The angle between this plane and that of $(\eta^5-C_5H_5)Mo(\eta^5-C_5H_5)$ (to the centre of gravity of the C₅H₅ rings) is 89.9°.

The Mo-C(3) bond length of 2.180(6) Å is shorter than the Mo- σ -alkyl distances in $(\eta^5-C_5H_5)_2$ MoCl(CH₂CH₃) (2.284(10) Å [8]) and $(\eta^5-C_5H_5)_2$ Mo[S(C₆H₅)][σ -CH(CN)CH₃] (2.306(3) Å [9]) and the Mo- σ -alkenyl distances in $(\eta^5-C_5H_5)_2$ MoH-[Z-C(CO₂CH₃)=CH(CO₂CH₃)] (2.223(6) Å [2]) and $(\eta^5-C_5H_5)_2$ Mo[S₂C(C₂H₅)₂]-[σ -C(CN)=CH₂] (2.232(4) Å [9]) but longer than the Mo-C distances in metallacyclopropene structure of $(\eta^5-C_5H_4CH_3)_2$ Mo[C₂(CF₃)₂] (2.129(7) Å [3]). In this last structure the short Mo-C bonds result from the back-donation from the filled metal b_2 orbitals [10] to the empty in-plane π^* orbital of the acetylene. In structure IV, reported here, the O(1) and C(3) atoms interact mainly with the b_2 orbital of the metal and with some combination of $1a_1$ and $2a_1$ orbitals [10]. The metallacyclic

Fig. 3. ORTEP drawing of the organometallic molecule $(\eta^5-C_5H_5)_2MOOC(O)CHCCO_2CH_3$ in IV showing the atom labelling scheme.

C 2

structure, involving the presence of the unsaturated C(2)-C(3) bond and electronwithdrawing atoms, may favour delocalization of electron density over the ring and thus strengthen the Mo-C(3) bond compared with respect to the relevant bonds in terminal σ -alkenyl complexes. Other distances and angles in the structure of IV are normal. An analogous metallacyclic structure of a platinum compound [(PPh₃)₂PtOC(O)CH=CH] was recently described by Scherer et al. [11]. Taking into account the standard deviations observed for IV and for the platinum complex, the structural parameters inside the metallacyclic entity in both molecules are nearly the same.

TABLE 2

M_{0} -O(1)	2 113(5)	O(1) - Mo - C(3)	74 1(2)
Mo-C(3)	2.180(6)	$M_0 - O(1) - C(1)$	120.0(3)
$M_0-CY(1)$	1.962	O(1) - C(1) - O(2)	123.4(6)
Mo-CY(2)	1.972	O(1) - C(1) - C(2)	114.5(7)
C(1)-O(1)	1.289(8)	O(2) - C(1) - C(2)	122.1(7)
C(1) - O(2)	1.229(9)	C(1) - C(2) - C(3)	115.1(7)
C(2) - C(1)	1.496(9)	C(2)-C(3)-C(4)	121.2(6)
C(2) - C(3)	1.315(10)	C(3)-C(4)-O(3)	111.6(5)
C(3)-C(4)	1.483(9)	C(3)-C(4)-O(4)	125.0(6)
C(4)-O(3)	1.324(8)	O(3) - C(4) - O(4)	123.3(6)
C(4)-O(4)	1.192(8)	C(4) - O(3) - C(5)	117.4(6)
O(3)-C(5)	1.451(8)	CY(1)-Mo-CY(2)	139.4
CY(1) is the grav	ity center of C(6)–C(10) a	itoms.	
CT17/01 1			

INTERATOMIC DISTANCES (Å) AND ANGLES (°)

CY(2) is the gravity center of C(11)-C(15) atoms.

Experimental

The reactions were performed under nitrogen using standard Schlenk tube techniques. Solvents were purified by standard methods and purged with nitrogen before use. $(\eta^5-C_5H_5)_2MoH_2$ was prepared by an established method [12]. Commercial dmad (Aldrich) was used. ¹H and ¹³C NMR spectra were recorded on a JEOL JNM-FX 100 spectrometer. Chemical shifts (δ values) are relative to internal of TMS.

Preparation of $[(\eta^5 - C_5 H_5)_2 MoOC(O)CH = CCO_2CH_3] \cdot H_2O(IV)$

Dropwise addition of 0.41 g (2.9 mmol) of dmad in 10 ml of THF to a solution of 0.66 g (2.9 mmol) of $(\eta^5-C_5H_5)_2MoH_2$ in 40 ml of THF at 0°C resulted in an immediate colour change from yellow to red. After 1 h stirring at 0°C, 40 ml of CHCl₃ was added and stirring was continued for 2 h at 0°C and 15 h at room temperature. The color changed to brown-red. Solvents were removed in vacuo, and the residue was dissolved in a minimum of methylene chloride and chromatographed on a "Florisil" column. Elution with CH₂Cl₂ gave the fumarate complex II in 10% yield. The second band, eluted with CH₂Cl₂/2% THF, gave chloro- σ -alkenyl complex V in 33% yield and the third, eluted with methanol, gave IV in 40% yield. Recrystallization of this last complex in CH₂Cl₂/heptane gave complex IV [(η^5 -C₃H₅)₂MoOC(O)CH=CCO₂CH₃] · H₂O as red well-shaped crystals which were used for X-ray analysis.

X-ray structure analysis of IV

A dark red crystal of IV was mounted on a Enraf-Nonius CAD-4 four-circle diffractometer. The unit cell was determined and refined from 25 randomly selected reflections obtained by using the CAD-4 automatic routines.

x	у	z	Atom	x	у	Z
0.28081(3)	0.000	0.04787(5)	C(13)	0.3799(5)	0.270(1)	0.0617(9)
0.4047(3)	-0.1614(6)	0.1742(5)	C(14)	0.2674(6)	0.3011(9)	0.0014(9)
0.4491(4)	- 0.3549(7)	0.3837(6)	C(15)	0.1989(5)	0.256(1)	0.1349(9)
0.0598(3)	-0.0492(7)	0.4097(6)	H(6)	0.230(6)	0.12(1)	-0.284(9)
0.0059(4)	-0.194(1)	0.1711(6)	H(7)	0.395(6)	-0.04(1)	-0.263(9)
0.3588(4)	0.4011(8)	0.6263(6)	H(8)	0.348(6)	-0.35(1)	-0.120(9)
0.3803(5)	-0.2645(9)	0.2993(7)	H(9)	0.160(6)	-0.35(1)	-0.073(9)
0.2606(4)	-0.264(1)	0.3367(8)	H(10)	0.065(6)	-0.02(1)	-0.151(8)
0.1980(5)	-0.1533(8)	0.2410(7)	H(11)	0.251(6)	0.18(1)	0.39(1)
0.0780(5)	-0.1351(9)	0.2656(8)	H(12)	0.441(6)	0.16(1)	0.310(9)
-0.0544(5)	-0.024(2)	0.4509(9)	H(13)	0.430(6)	0.30(1)	0.01(1)
0.2316(6)	0.0263(9)	-0.2314(7)	H(14)	0.245(6)	0.35(1)	-0.100(9)
0.3297(5)	-0.080(1)	-0.2245(8)	H(15)	0.131(6)	0.28(1)	0.120(9)
0.3052(6)	-0.2429(9)	-0.1441(8)	H(51)	-0.055(5)	0.02(1)	0.57(8)
0.1928(6)	-0.240(1)	- 0.0995(8)	H(52)	-0.092(6)	0.04(1)	0.372(9)
0.1460(6)	-0.072(1)	-0.1535(8)	H(53)	-0.092(6)	-0.12(1)	0.436(9)
0.2687(6)	0.200(1)	0.2758(8)	H(1(05))) 0.382(5)	0.45(1)	0.537(8)
0.3783(5)	0.211(1)	0.2293(8)	H(2(05))) 0.374(5)	0.43(1)	0.716(9)
	x 0.28081(3) 0.4047(3) 0.4491(4) 0.0598(3) 0.0059(4) 0.3588(4) 0.3803(5) 0.2606(4) 0.1980(5) - 0.0544(5) 0.2316(6) 0.3297(5) 0.3052(6) 0.1928(6) 0.1460(6) 0.2687(6) 0.3783(5)	xy $0.28081(3)$ 0.000 $0.4047(3)$ $-0.1614(6)$ $0.4491(4)$ $-0.3549(7)$ $0.0598(3)$ $-0.0492(7)$ $0.0059(4)$ $-0.194(1)$ $0.3588(4)$ $0.4011(8)$ $0.3803(5)$ $-0.2645(9)$ $0.2606(4)$ $-0.264(1)$ $0.1980(5)$ $-0.1533(8)$ $0.0780(5)$ $-0.1351(9)$ $-0.0544(5)$ $-0.024(2)$ $0.2316(6)$ $-0.263(9)$ $0.3927(5)$ $-0.080(1)$ $0.3052(6)$ $-0.2429(9)$ $0.1928(6)$ $-0.27(1)$ $0.2687(6)$ $0.200(1)$ $0.3783(5)$ $0.211(1)$	xyz $0.28081(3)$ 0.000 $0.04787(5)$ $0.4047(3)$ $-0.1614(6)$ $0.1742(5)$ $0.4491(4)$ $-0.3549(7)$ $0.3837(6)$ $0.0598(3)$ $-0.0492(7)$ $0.4097(6)$ $0.0059(4)$ $-0.194(1)$ $0.1711(6)$ $0.3588(4)$ $0.4011(8)$ $0.6263(6)$ $0.3803(5)$ $-0.2645(9)$ $0.2993(7)$ $0.2606(4)$ $-0.264(1)$ $0.3367(8)$ $0.1980(5)$ $-0.1351(9)$ $0.2656(8)$ $-0.0544(5)$ $-0.024(2)$ $0.4509(9)$ $0.2316(6)$ $0.0263(9)$ $-0.2314(7)$ $0.352(6)$ $-0.240(1)$ $-0.2245(8)$ $0.3052(6)$ $-0.240(1)$ $-0.0295(8)$ $0.1460(6)$ $-0.200(1)$ $0.2758(8)$ $0.2687(6)$ $0.200(1)$ $0.2758(8)$ $0.3783(5)$ $0.211(1)$ $0.2293(8)$	xyzAtom $0.28081(3)$ 0.000 $0.04787(5)$ $C(13)$ $0.4047(3)$ $-0.1614(6)$ $0.1742(5)$ $C(14)$ $0.4491(4)$ $-0.3549(7)$ $0.3837(6)$ $C(15)$ $0.0598(3)$ $-0.0492(7)$ $0.4097(6)$ $H(6)$ $0.0059(4)$ $-0.194(1)$ $0.1711(6)$ $H(7)$ $0.3588(4)$ $0.4011(8)$ $0.6263(6)$ $H(8)$ $0.3803(5)$ $-0.2645(9)$ $0.2993(7)$ $H(9)$ $0.2606(4)$ $-0.264(1)$ $0.3367(8)$ $H(10)$ $0.1980(5)$ $-0.1531(8)$ $0.2410(7)$ $H(11)$ $0.0780(5)$ $-0.1351(9)$ $0.2656(8)$ $H(12)$ $-0.0544(5)$ $-0.024(2)$ $0.4509(9)$ $H(13)$ $0.2316(6)$ $0.0263(9)$ $-0.2314(7)$ $H(14)$ $0.3297(5)$ $-0.080(1)$ $-0.2245(8)$ $H(151)$ $0.1928(6)$ $-0.240(1)$ $-0.0995(8)$ $H(52)$ $0.1460(6)$ $-0.072(1)$ $-0.1535(8)$ $H(1053)$ $0.2687(6)$ $0.200(1)$ $0.2758(8)$ $H(1055)$	xyzAtomx $0.28081(3)$ 0.000 $0.04787(5)$ $C(13)$ $0.3799(5)$ $0.4047(3)$ $-0.1614(6)$ $0.1742(5)$ $C(14)$ $0.2674(6)$ $0.4491(4)$ $-0.3549(7)$ $0.3837(6)$ $C(15)$ $0.1989(5)$ $0.0598(3)$ $-0.0492(7)$ $0.4097(6)$ $H(6)$ $0.230(6)$ $0.0059(4)$ $-0.194(1)$ $0.1711(6)$ $H(7)$ $0.395(6)$ $0.3588(4)$ $0.4011(8)$ $0.6263(6)$ $H(8)$ $0.348(6)$ $0.3803(5)$ $-0.2645(9)$ $0.2993(7)$ $H(9)$ $0.160(6)$ $0.2606(4)$ $-0.264(1)$ $0.3367(8)$ $H(10)$ $0.065(6)$ $0.1980(5)$ $-0.1533(8)$ $0.2410(7)$ $H(11)$ $0.251(6)$ $0.0780(5)$ $-0.1351(9)$ $0.2656(8)$ $H(12)$ $0.441(6)$ $-0.0544(5)$ $-0.024(2)$ $0.4509(9)$ $H(13)$ $0.430(6)$ $0.2316(6)$ $0.0263(9)$ $-0.2314(7)$ $H(14)$ $0.245(6)$ $0.3297(5)$ $-0.080(1)$ $-0.2245(8)$ $H(15)$ $-0.131(6)$ $0.3297(5)$ $-0.080(1)$ $-0.2245(8)$ $H(15)$ $-0.092(6)$ $0.1460(6)$ $-0.072(1)$ $-0.1535(8)$ $H(52)$ $-0.092(6)$ $0.1460(6)$ $-0.200(1)$ $0.2758(8)$ $H(105)$ $0.382(5)$ $0.3783(5)$ $0.211(1)$ $0.2293(8)$ $H(205)$ $0.374(5)$	xyzAtomxy0.28081(3)0.0000.04787(5)C(13)0.3799(5)0.270(1)0.4047(3) $-0.1614(6)$ 0.1742(5)C(14)0.2674(6)0.3011(9)0.4491(4) $-0.3549(7)$ 0.3837(6)C(15)0.1989(5)0.256(1)0.0598(3) $-0.0492(7)$ 0.4097(6)H(6)0.230(6)0.12(1)0.0059(4) $-0.194(1)$ 0.1711(6)H(7)0.395(6) $-0.04(1)$ 0.3588(4)0.4011(8)0.6263(6)H(8)0.348(6) $-0.35(1)$ 0.3803(5) $-0.2645(9)$ 0.2993(7)H(9)0.160(6) $-0.35(1)$ 0.2606(4) $-0.264(1)$ 0.3367(8)H(10)0.065(6) $-0.02(1)$ 0.1980(5) $-0.1531(8)$ 0.2410(7)H(11)0.251(6)0.18(1)0.0780(5) $-0.1351(9)$ 0.2656(8)H(12)0.441(6)0.16(1) $-0.0544(5)$ $-0.224(2)$ 0.4509(9)H(13)0.430(6)0.30(1)0.2316(6)0.0263(9) $-0.2314(7)$ H(14)0.245(6)0.35(1)0.3297(5) $-0.080(1)$ $-0.2245(8)$ H(15) $-0.092(6)$ $-0.241(1)$ 0.1928(6) $-0.240(1)$ $-0.0995(8)$ H(52) $-0.092(6)$ $-0.12(1)$ 0.166(6) $-0.072(1)$ $-0.1535(8)$ H(105)) $0.382(5)$ $0.45(1)$ 0.3573(5) $0.200(1)$ $0.2758(8)$ H(10(5)) $0.374(5)$ $0.43(1)$

TABLE 3

ATOMIC COORDINATES FOR IV

Atom	B _{1,1}	B _{2,2}	B _{3,3}	B _{1,2}	B _{1,3}	B _{2,3}
Мо	0.00341(2)	0.00795(5)	0.00802(4)	-0.0005(2)	0.00138(5)	-0.0000(2)
O(1)	0.0038(2)	0.0125(8)	0.0129(6)	0.0014(8)	0.0035(6)	0.007(1)
O(2)	0.0045(3)	0.018(1)	0.0183(8)	0.005(1)	0.0005(8)	0.012(2)
O(3)	0.0035(2)	0.025(2)	0.0168(7)	0.0001(9)	0.0039(7)	-0.0.011(1)
O(4)	0.0039(3)	0.040(2)	0.0192(9)	-0.009(1)	0.0032(8)	-0.021(2)
O(5)	0.0073(4)	0.022(1)	0.0134(7)	0.003(1)	0.0038(9)	0.006(2)
C(1)	0.0038(3)	0.011(1)	0.0127(9)	-0.001(1)	0.0042(5)	0.004(2)
C(2)	0.0032(3)	0.017(1)	0.0137(9)	-0.003(1)	0.0021(9)	0.004(2)
C(3)	0.0037(3)	0.012(1)	0.0104(8)	-0.004(1)	0.0038(9)	-0.002(2)
C(4)	0.0040(4)	0.015(1)	0.0120(9)	-0.000(1)	0.002(1)	0.003(2)
C(5)	0.0042(4)	0.043(3)	0.019(1)	0.001(2)	0.004(1)	-0.018(4)
C(6)	0.0110(6)	0.012(1)	0.0088(7)	-0.001(2)	-0.001(1)	0.003(2)
C(7)	0.0065(4)	0.015(1)	0.011(9)	-0.002(1)	0.006(1)	-0.005(2)
C(8)	0.0082(5)	0.011(1)	0.0121(9)	0.002(1)	0.001(1)	-0.009(2)
C(9)	0.0076(5)	0.014(1)	0.0131(9)	-0.007(1)	0.002(1)	-0.010(2)
C(10)	0.0060(4)	0.019(1)	0.0110(9)	-0.003(1)	-0.001(1)	-0.007(2)
C(11)	0.0068(5)	0.016(1)	0.014(1)	-0.003(1)	0.005(1)	-0.004(2)
C(12)	0.0061(4)	0.012(1)	0.0130(9)	-0.002(1)	-0.000(1)	-0.008(2)
C(13)	0.0054(4)	0.013(1)	0.019(1)	-0.006(1)	0.005(1)	-0.001(2)
C(14)	0.0083(6)	0.010(1)	0.016(1)	-0.000(1)	-0.003(1)	0.002(2)
C(15)	0.0046(4)	0.014(1)	0.021(1)	0.004(1)	0.005(1)	-0.008(2)

TABLE 4 THERMAL PARAMETERS FOR IV

Crystal data: $C_{15}H_{16}MoO_5$, M = 368.24, monoclinic, a = 12.111(9), b =7.374(2), c = 7.830(5) Å, $\beta = 93.43(4)^{\circ}$, U = 698.1 Å³, Z = 2, μ (Mo- K_{α}) 9.0 cm⁻¹. Space group $P2_1$ (C_2^2 , No 4). The intensities of 1475 independent planes, measured using $\omega - 2\theta$ scan (θ_{\min} 2°, θ_{\max} 28°), with $I > 3\sigma(I)$ were used in the solution and refinement of the structure. All calculations were carried out using the Enraf-Nonius SDP program library [13]. Neutral atom scattering factors and anomalous dispersion corrections applied to all non-hydrogen atoms were those given by Cromer and Waber [14]. The structure was solved and refined by conventional three-dimensional Patterson, difference Fourier and full-matrix least-squares methods. All non-hydrogen atoms were refined with anisotropic thermal parameters and the difference Fourier map at this stage gave the positions of hydrogen atoms. Final refinement of all parameters (B_{iso} for H atoms fixed at 4.0 Å²) led to the following residuals: R = 0.0303, $R_w = 0.0371$. These factors calculated for the enantiomorphic form in a polar P_{2_1} space group were slightly higher (0.0307 and 0.0377, respectively) so the original set of parameters was retained. The weighting scheme employed was $w^{-1} = \sigma^2(F) = 1/4 \{ \sigma(I)/(I) + 0.06^2(I) \}$. The final atomic coordinates and thermal parameters are given in Tables 3 and 4.

Tables of observed and calculated structure factors (9 pages) may be obtained from the Authors.

References

- 1 A. Nakamura and S. Otsuka, J. Am. Chem. Soc., 94 (1972) 1886.
- 2 G.E. Herberich, B. Hessner and J. Okuda, J. Organomet. Chem., 254 (1983) 317.
- 3 J.L. Petersen and J.W. Egan, Jr., Inorg. Chem., 20 (1981) 2883.

- 4 L.C. Gomes de Lima, M. Cariou, H. Scordia, R. Kergoat, M.M. Kubicki and J.E. Guerchais, J. Organomet. Chem., 290 (1985) 321.
- 5 A. Nakamura and S. Otsuka, J. Molec. Catal., 1 (1975/76) 285.
- 6 H.D. Empsall, E.M. Hyde, D. Pawson and B.L. Shaw, J. Chem. Soc., Dalton Trans., (1977) 1292.
- 7 P. Braunstein, D. Matt, Y. Dusausoy, J. Fischer, A. Mitschler and L. Ricard, J. Am. Chem. Soc., 103 (1981) 5115.
- 8 K. Prout, T.S. Cameron, A. Forder, S.R. Critchley, B. Denton and G.V. Rees, Acta Cyrstallogr., B, 30 (1974) 2290.
- 9 M.M. Kubicki, R. Kergoat, L.C. Gomes de Lima, M. Cariou, H. Scordia, J.E. Guerchais and P. L'Haridon, Inorg. Chim. Acta, 104 (1985) 191.
- 10 J.W. Lauher and R. Hoffmann, J. Am. Chem. Soc., 98 (1976) 1729.
- 11 O.J. Scherer, K. Hussong and G. Wolmershäuser, J. Organomet. Chem., 289 (1985) 215.
- 12 R.B. King, Organometallic Synthesis, Vol. 1, Academic Press, New York, (1965) 79.
- 13 B.A. Frenzt, in M. Schenk, R. Olthof-Hazekamp, M. Von Konigsveld and G.C. Bassi (Eds.), Computing in Crystallography, Delft University Press, Delft, The Netherlands, 1978.
- 14 D.T. Cromer and J.T. Waber, International Tables for X-ray Crystallography, Kynoch Press, Birmingham, 1975, Vol. IV.